Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Marian Koman, ${ }^{\text {a* }}$ Ladislav Martiška, ${ }^{\text {a }}$ Dušan Valigura ${ }^{\text {a }}$ and Tadeuš Glowiak ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia, and ${ }^{\text {b }}$ Institut of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland

Correspondence e-mail: koman@chtf.stuba.sk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.040$
ωR factor $=0.110$
Data-to-parameter ratio $=9.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1H-Nicotinamidium 3,5-dinitrosalicylate

The crystal and molecular structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}^{-}$, has been studied by single-crystal X-ray diffraction at 293 (2) K. The structure consists of pairs of 1 H -nicotinamidium cations and 3,5-dinitrosalicylato anions which are held together by ionic interactions and by additional hydrogen-bond interactions. The ions are also held together by weaker hydrogen bonds and by van der Waals interactions.

Comment

As part of our study of new copper(II) complexes with 3,5dinitrosalicylate anions and nicotinamide, the title compound, (I), was also prepared. Later, the same compound were also prepared by reaction of nicotinamide with 3,5-dinitrosalicylic acid in aqueous solution. We believe that salt formation is typical for 3,5-dinitrosalicylic acid, e.g. with 3-amino-1,2,4triazole (Smith et al., 1996) or even with different aminobenzoic acids (Smith et al., 1995).

(I)

Neighbouring protonated molecules of nicotinamide and 3,5-dinitrosalicylate anions are linked by hydrogen bonds $\mathrm{N} 4-\mathrm{H} 41 \cdots \mathrm{O} 1^{\text {iv }}$ (see Table 2). Additional hydrogen bonds are formed by the amide H atoms of the nicotinamide cation and by the O atom of the nitro groups of the salicylate anion (Table 2). Atom H3 forms an intramolecular hydrogen bond with atoms O 2 and O 3 . Atom O 3 is statistically distributed between two positions.

Experimental

Crystals of the title compound suitable for X-ray crystal structure analysis were obtained by slow crystallization of the yellow-green reaction mixture containing copper(II) sulfate $\quad(0.0926 \mathrm{~g}$ $\left.\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \quad 0.37 \mathrm{mmol}\right), \quad 3,5$-dinitrosalicylic acid $\quad(0.2811 \mathrm{~g}$, 0.74 mmol) and nicotinamide ($0.186 \mathrm{~g}, 1.52 \mathrm{mmol}$) in aqueous solution (50 ml), in an Erlenmayer flask at room temperature for three months.

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{7}{ }^{-}$

$$
\begin{aligned}
& D_{x}=1.617 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Cu K } K \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=4.5-11.8^{\circ} \\
& \mu=1.20 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.40 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Syntex $P 2_{1}$ diffractometer
$\theta-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.544, T_{\text {max }}=0.741$
3511 measured reflections
2212 independent reflections
1631 reflections with $I>2 \sigma I$)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.110$
$S=1.07$
2212 reflections
231 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C7	1.254 (2)	C1-C6	1.383 (3)
O2-C7	1.258 (3)	C1-C2	1.410 (3)
O3-C2	1.297 (3)	C1-C7	1.497 (3)
O4-N1	1.205 (3)	C2-C3	1.402 (3)
O5-N1	1.196 (3)	C3-C4	1.379 (3)
O6-N2	1.220 (3)	C4-C5	1.372 (3)
O7-N2	1.211 (3)	C5-C6	1.390 (3)
O8-C13	1.228 (2)	C8-C9	1.379 (3)
N1-C3	1.453 (3)	C8-C12	1.382 (3)
N2-C5	1.462 (3)	C8-C13	1.501 (2)
N3-C13	1.318 (3)	C10-C11	1.364 (3)
N4-C9	1.337 (3)	C11-C12	1.377 (3)
N4-C10	1.332 (3)		
O5-N1-O4	122.0 (2)	C4-C5-C6	121.96 (19)
O5-N1-C3	119.1 (2)	C4-C5-N2	117.87 (18)
O4-N1-C3	118.8 (2)	C6-C5-N2	120.16 (18)
O7-N2-O6	123.0 (2)	O1-C7-O2	123.63 (18)
O7-N2-C5	119.1 (2)	O1-C7-C1	118.15 (19)
O6-N2-C5	117.9 (2)	O2-C7-C1	118.22 (17)
C9-N4-C10	122.82 (17)	C9-C8-C12	118.35 (17)
C6-C1-C2	121.02 (18)	C9-C8-C13	121.89 (17)
C6-C1-C7	120.29 (17)	C12-C8-C13	119.73 (17)
C2-C1-C7	118.68 (18)	N4-C9-C8	119.81 (18)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	122.82 (18)	N4-C10-C11	119.19 (18)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	119.74 (19)	C10-C11-C12	119.95 (19)
C3-C2-C1	117.40 (18)	C8-C12-C11	119.87 (19)
C4-C3-C2	122.08 (17)	$\mathrm{O} 8-\mathrm{C} 13-\mathrm{N} 3$	124.10 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	117.56 (19)	O8-C13-C8	119.74 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	120.35 (19)	N3-C13-C8	116.15 (17)
C5-C4-C3	118.61 (18)		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 31 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.17	$3.018(2)$	167
$\mathrm{~N} 3-\mathrm{H} 32 \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	2.32	$2.995(2)$	136
$\mathrm{~N} 3-\mathrm{H} 32 \cdots \mathrm{O}^{6 i i}$	0.86	2.35	$3.038(3)$	138
$\mathrm{~N} 4-\mathrm{H} 41 \cdots \mathrm{O}^{\mathrm{iv}}$	0.86	1.76	$2.619(2)$	176
Symmetry codes: (i)	$x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z ;$	(ii) $1+x, y, z ;$	(iii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;$	(iv)
$\frac{1}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}$.				

Figure 1
The anion and cation in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as spheres of arbitrary radii. The alternative disordered atoms O^{\prime} and $\mathrm{H} 3^{\prime}$ have been omited for clarity.

The O atom of the hydroxy group is disordered, occupying two alternative positions represented by O 3 and $\mathrm{O} 3^{\prime}$ with occupancy factors of 0.758 (5) and 0.242 (5), respectively. Atom O3 was refined anisotropically and O3' isotropically. For atom O3 (anisotropic refinement) in a single position, $R 1=0.071$ for 1631 reflections and $\Delta \rho_{\max }=1.58 \mathrm{e}^{\AA^{-3}}$. For the alternative atom O3 (isotropically refined), $R 1$ and $\Delta \rho_{\max }$ were 0.044 and $0.43 \mathrm{e}^{\AA^{-3}}$, respectively. The H atoms were placed in calculated positions, except for H 3 , which was located from a difference Fourier map.

Data collection: $P 2_{1}$ Software (Syntex, 1974); cell refinement: $P 2_{1}$ Software; data reduction: XP21 (Pavelčík, 1993); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL93 (Sheldrick, 1994); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL93.

References

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pavelčík, F. (1993). XP21. Pharmaceutical Faculty, Comenius University, Bratislava, Slovakia.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1994). SHELXL93. University of Göttingen, Germany.
Smith, G., Lynch, D. E., Byriel, K. A. \& Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133-1137.
Smith, G., Lynch, D. E., Byriel, K. A. \& Kennard, C. H. L. (1996). Acta Cryst. C52, 231-233.
Syntex (1974). $P 2_{1}$ Software. Syntex Analytical Instruments, Cupertino, California, USA.

